(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
active(f(X)) → f(active(X))
active(h(X)) → h(active(X))
f(mark(X)) → mark(f(X))
h(mark(X)) → mark(h(X))
proper(f(X)) → f(proper(X))
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
proper(d(X)) → d(proper(X))
proper(h(X)) → h(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
d(ok(X)) → ok(d(X))
h(ok(X)) → ok(h(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
proper(f(z0)) → f(proper(z0))
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(d(z0)) → d(proper(z0))
proper(h(z0)) → h(proper(z0))
c(ok(z0)) → ok(c(z0))
g(ok(z0)) → ok(g(z0))
d(ok(z0)) → ok(d(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(f(f(z0))) → c1(C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(D(z0))
ACTIVE(h(z0)) → c3(C(d(z0)), D(z0))
ACTIVE(f(z0)) → c4(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c5(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
H(mark(z0)) → c8(H(z0))
H(ok(z0)) → c9(H(z0))
PROPER(f(z0)) → c10(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c11(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c12(G(proper(z0)), PROPER(z0))
PROPER(d(z0)) → c13(D(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c14(H(proper(z0)), PROPER(z0))
C(ok(z0)) → c15(C(z0))
G(ok(z0)) → c16(G(z0))
D(ok(z0)) → c17(D(z0))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(f(f(z0))) → c1(C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(D(z0))
ACTIVE(h(z0)) → c3(C(d(z0)), D(z0))
ACTIVE(f(z0)) → c4(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c5(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
H(mark(z0)) → c8(H(z0))
H(ok(z0)) → c9(H(z0))
PROPER(f(z0)) → c10(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c11(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c12(G(proper(z0)), PROPER(z0))
PROPER(d(z0)) → c13(D(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c14(H(proper(z0)), PROPER(z0))
C(ok(z0)) → c15(C(z0))
G(ok(z0)) → c16(G(z0))
D(ok(z0)) → c17(D(z0))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
K tuples:none
Defined Rule Symbols:
active, f, h, proper, c, g, d, top
Defined Pair Symbols:
ACTIVE, F, H, PROPER, C, G, D, TOP
Compound Symbols:
c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19
(3) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
We considered the (Usable) Rules:
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(d(z0)) → d(proper(z0))
proper(h(z0)) → h(proper(z0))
d(ok(z0)) → ok(d(z0))
g(ok(z0)) → ok(g(z0))
c(ok(z0)) → ok(c(z0))
And the Tuples:
ACTIVE(f(f(z0))) → c1(C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(D(z0))
ACTIVE(h(z0)) → c3(C(d(z0)), D(z0))
ACTIVE(f(z0)) → c4(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c5(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
H(mark(z0)) → c8(H(z0))
H(ok(z0)) → c9(H(z0))
PROPER(f(z0)) → c10(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c11(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c12(G(proper(z0)), PROPER(z0))
PROPER(d(z0)) → c13(D(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c14(H(proper(z0)), PROPER(z0))
C(ok(z0)) → c15(C(z0))
G(ok(z0)) → c16(G(z0))
D(ok(z0)) → c17(D(z0))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(C(x1)) = 0
POL(D(x1)) = 0
POL(F(x1)) = 0
POL(G(x1)) = 0
POL(H(x1)) = 0
POL(PROPER(x1)) = 0
POL(TOP(x1)) = [4]x1
POL(active(x1)) = [4]
POL(c(x1)) = [4]x1
POL(c1(x1, x2, x3, x4)) = x1 + x2 + x3 + x4
POL(c10(x1, x2)) = x1 + x2
POL(c11(x1, x2)) = x1 + x2
POL(c12(x1, x2)) = x1 + x2
POL(c13(x1, x2)) = x1 + x2
POL(c14(x1, x2)) = x1 + x2
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1, x2)) = x1 + x2
POL(c19(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(c4(x1, x2)) = x1 + x2
POL(c5(x1, x2)) = x1 + x2
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(d(x1)) = [4]x1
POL(f(x1)) = x1
POL(g(x1)) = x1
POL(h(x1)) = x1
POL(mark(x1)) = [4]
POL(ok(x1)) = [4]
POL(proper(x1)) = 0
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
proper(f(z0)) → f(proper(z0))
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(d(z0)) → d(proper(z0))
proper(h(z0)) → h(proper(z0))
c(ok(z0)) → ok(c(z0))
g(ok(z0)) → ok(g(z0))
d(ok(z0)) → ok(d(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(f(f(z0))) → c1(C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(D(z0))
ACTIVE(h(z0)) → c3(C(d(z0)), D(z0))
ACTIVE(f(z0)) → c4(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c5(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
H(mark(z0)) → c8(H(z0))
H(ok(z0)) → c9(H(z0))
PROPER(f(z0)) → c10(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c11(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c12(G(proper(z0)), PROPER(z0))
PROPER(d(z0)) → c13(D(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c14(H(proper(z0)), PROPER(z0))
C(ok(z0)) → c15(C(z0))
G(ok(z0)) → c16(G(z0))
D(ok(z0)) → c17(D(z0))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(f(f(z0))) → c1(C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(D(z0))
ACTIVE(h(z0)) → c3(C(d(z0)), D(z0))
ACTIVE(f(z0)) → c4(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c5(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
H(mark(z0)) → c8(H(z0))
H(ok(z0)) → c9(H(z0))
PROPER(f(z0)) → c10(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c11(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c12(G(proper(z0)), PROPER(z0))
PROPER(d(z0)) → c13(D(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c14(H(proper(z0)), PROPER(z0))
C(ok(z0)) → c15(C(z0))
G(ok(z0)) → c16(G(z0))
D(ok(z0)) → c17(D(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
K tuples:
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, f, h, proper, c, g, d, top
Defined Pair Symbols:
ACTIVE, F, H, PROPER, C, G, D, TOP
Compound Symbols:
c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19
(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
C(ok(z0)) → c15(C(z0))
G(ok(z0)) → c16(G(z0))
D(ok(z0)) → c17(D(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
We considered the (Usable) Rules:
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(d(z0)) → d(proper(z0))
proper(h(z0)) → h(proper(z0))
d(ok(z0)) → ok(d(z0))
g(ok(z0)) → ok(g(z0))
c(ok(z0)) → ok(c(z0))
And the Tuples:
ACTIVE(f(f(z0))) → c1(C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(D(z0))
ACTIVE(h(z0)) → c3(C(d(z0)), D(z0))
ACTIVE(f(z0)) → c4(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c5(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
H(mark(z0)) → c8(H(z0))
H(ok(z0)) → c9(H(z0))
PROPER(f(z0)) → c10(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c11(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c12(G(proper(z0)), PROPER(z0))
PROPER(d(z0)) → c13(D(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c14(H(proper(z0)), PROPER(z0))
C(ok(z0)) → c15(C(z0))
G(ok(z0)) → c16(G(z0))
D(ok(z0)) → c17(D(z0))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = [2]x1
POL(C(x1)) = x1
POL(D(x1)) = [4]x1
POL(F(x1)) = 0
POL(G(x1)) = [2]x1
POL(H(x1)) = 0
POL(PROPER(x1)) = 0
POL(TOP(x1)) = [2]x1
POL(active(x1)) = 0
POL(c(x1)) = [4]x1
POL(c1(x1, x2, x3, x4)) = x1 + x2 + x3 + x4
POL(c10(x1, x2)) = x1 + x2
POL(c11(x1, x2)) = x1 + x2
POL(c12(x1, x2)) = x1 + x2
POL(c13(x1, x2)) = x1 + x2
POL(c14(x1, x2)) = x1 + x2
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1, x2)) = x1 + x2
POL(c19(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(c4(x1, x2)) = x1 + x2
POL(c5(x1, x2)) = x1 + x2
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(d(x1)) = [4]x1
POL(f(x1)) = [2]x1
POL(g(x1)) = x1
POL(h(x1)) = [4]x1
POL(mark(x1)) = 0
POL(ok(x1)) = [1] + x1
POL(proper(x1)) = 0
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
proper(f(z0)) → f(proper(z0))
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(d(z0)) → d(proper(z0))
proper(h(z0)) → h(proper(z0))
c(ok(z0)) → ok(c(z0))
g(ok(z0)) → ok(g(z0))
d(ok(z0)) → ok(d(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(f(f(z0))) → c1(C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(D(z0))
ACTIVE(h(z0)) → c3(C(d(z0)), D(z0))
ACTIVE(f(z0)) → c4(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c5(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
H(mark(z0)) → c8(H(z0))
H(ok(z0)) → c9(H(z0))
PROPER(f(z0)) → c10(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c11(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c12(G(proper(z0)), PROPER(z0))
PROPER(d(z0)) → c13(D(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c14(H(proper(z0)), PROPER(z0))
C(ok(z0)) → c15(C(z0))
G(ok(z0)) → c16(G(z0))
D(ok(z0)) → c17(D(z0))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(f(f(z0))) → c1(C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(D(z0))
ACTIVE(h(z0)) → c3(C(d(z0)), D(z0))
ACTIVE(f(z0)) → c4(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c5(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
H(mark(z0)) → c8(H(z0))
H(ok(z0)) → c9(H(z0))
PROPER(f(z0)) → c10(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c11(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c12(G(proper(z0)), PROPER(z0))
PROPER(d(z0)) → c13(D(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c14(H(proper(z0)), PROPER(z0))
K tuples:
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
C(ok(z0)) → c15(C(z0))
G(ok(z0)) → c16(G(z0))
D(ok(z0)) → c17(D(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
Defined Rule Symbols:
active, f, h, proper, c, g, d, top
Defined Pair Symbols:
ACTIVE, F, H, PROPER, C, G, D, TOP
Compound Symbols:
c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19
(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ACTIVE(f(f(z0))) → c1(C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(D(z0))
ACTIVE(h(z0)) → c3(C(d(z0)), D(z0))
We considered the (Usable) Rules:
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(d(z0)) → d(proper(z0))
proper(h(z0)) → h(proper(z0))
d(ok(z0)) → ok(d(z0))
g(ok(z0)) → ok(g(z0))
c(ok(z0)) → ok(c(z0))
And the Tuples:
ACTIVE(f(f(z0))) → c1(C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(D(z0))
ACTIVE(h(z0)) → c3(C(d(z0)), D(z0))
ACTIVE(f(z0)) → c4(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c5(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
H(mark(z0)) → c8(H(z0))
H(ok(z0)) → c9(H(z0))
PROPER(f(z0)) → c10(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c11(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c12(G(proper(z0)), PROPER(z0))
PROPER(d(z0)) → c13(D(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c14(H(proper(z0)), PROPER(z0))
C(ok(z0)) → c15(C(z0))
G(ok(z0)) → c16(G(z0))
D(ok(z0)) → c17(D(z0))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = [1]
POL(C(x1)) = 0
POL(D(x1)) = 0
POL(F(x1)) = 0
POL(G(x1)) = 0
POL(H(x1)) = 0
POL(PROPER(x1)) = 0
POL(TOP(x1)) = x1
POL(active(x1)) = 0
POL(c(x1)) = [2]x1
POL(c1(x1, x2, x3, x4)) = x1 + x2 + x3 + x4
POL(c10(x1, x2)) = x1 + x2
POL(c11(x1, x2)) = x1 + x2
POL(c12(x1, x2)) = x1 + x2
POL(c13(x1, x2)) = x1 + x2
POL(c14(x1, x2)) = x1 + x2
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1, x2)) = x1 + x2
POL(c19(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(c4(x1, x2)) = x1 + x2
POL(c5(x1, x2)) = x1 + x2
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(d(x1)) = [4]x1
POL(f(x1)) = [2]x1
POL(g(x1)) = [4]x1
POL(h(x1)) = x1
POL(mark(x1)) = 0
POL(ok(x1)) = [1]
POL(proper(x1)) = 0
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
proper(f(z0)) → f(proper(z0))
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(d(z0)) → d(proper(z0))
proper(h(z0)) → h(proper(z0))
c(ok(z0)) → ok(c(z0))
g(ok(z0)) → ok(g(z0))
d(ok(z0)) → ok(d(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(f(f(z0))) → c1(C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(D(z0))
ACTIVE(h(z0)) → c3(C(d(z0)), D(z0))
ACTIVE(f(z0)) → c4(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c5(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
H(mark(z0)) → c8(H(z0))
H(ok(z0)) → c9(H(z0))
PROPER(f(z0)) → c10(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c11(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c12(G(proper(z0)), PROPER(z0))
PROPER(d(z0)) → c13(D(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c14(H(proper(z0)), PROPER(z0))
C(ok(z0)) → c15(C(z0))
G(ok(z0)) → c16(G(z0))
D(ok(z0)) → c17(D(z0))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(f(z0)) → c4(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c5(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
H(mark(z0)) → c8(H(z0))
H(ok(z0)) → c9(H(z0))
PROPER(f(z0)) → c10(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c11(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c12(G(proper(z0)), PROPER(z0))
PROPER(d(z0)) → c13(D(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c14(H(proper(z0)), PROPER(z0))
K tuples:
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
C(ok(z0)) → c15(C(z0))
G(ok(z0)) → c16(G(z0))
D(ok(z0)) → c17(D(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c1(C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(D(z0))
ACTIVE(h(z0)) → c3(C(d(z0)), D(z0))
Defined Rule Symbols:
active, f, h, proper, c, g, d, top
Defined Pair Symbols:
ACTIVE, F, H, PROPER, C, G, D, TOP
Compound Symbols:
c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19
(9) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(ok(z0)) → c7(F(z0))
We considered the (Usable) Rules:
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(d(z0)) → d(proper(z0))
proper(h(z0)) → h(proper(z0))
d(ok(z0)) → ok(d(z0))
g(ok(z0)) → ok(g(z0))
c(ok(z0)) → ok(c(z0))
And the Tuples:
ACTIVE(f(f(z0))) → c1(C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(D(z0))
ACTIVE(h(z0)) → c3(C(d(z0)), D(z0))
ACTIVE(f(z0)) → c4(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c5(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
H(mark(z0)) → c8(H(z0))
H(ok(z0)) → c9(H(z0))
PROPER(f(z0)) → c10(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c11(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c12(G(proper(z0)), PROPER(z0))
PROPER(d(z0)) → c13(D(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c14(H(proper(z0)), PROPER(z0))
C(ok(z0)) → c15(C(z0))
G(ok(z0)) → c16(G(z0))
D(ok(z0)) → c17(D(z0))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = [2] + x1
POL(C(x1)) = 0
POL(D(x1)) = 0
POL(F(x1)) = [2]x1
POL(G(x1)) = 0
POL(H(x1)) = 0
POL(PROPER(x1)) = 0
POL(TOP(x1)) = x12
POL(active(x1)) = x1
POL(c(x1)) = x1
POL(c1(x1, x2, x3, x4)) = x1 + x2 + x3 + x4
POL(c10(x1, x2)) = x1 + x2
POL(c11(x1, x2)) = x1 + x2
POL(c12(x1, x2)) = x1 + x2
POL(c13(x1, x2)) = x1 + x2
POL(c14(x1, x2)) = x1 + x2
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1, x2)) = x1 + x2
POL(c19(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(c4(x1, x2)) = x1 + x2
POL(c5(x1, x2)) = x1 + x2
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(d(x1)) = x1
POL(f(x1)) = [3]x1
POL(g(x1)) = x1
POL(h(x1)) = x1
POL(mark(x1)) = x1
POL(ok(x1)) = [2] + x1
POL(proper(x1)) = 0
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
proper(f(z0)) → f(proper(z0))
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(d(z0)) → d(proper(z0))
proper(h(z0)) → h(proper(z0))
c(ok(z0)) → ok(c(z0))
g(ok(z0)) → ok(g(z0))
d(ok(z0)) → ok(d(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(f(f(z0))) → c1(C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(D(z0))
ACTIVE(h(z0)) → c3(C(d(z0)), D(z0))
ACTIVE(f(z0)) → c4(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c5(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
H(mark(z0)) → c8(H(z0))
H(ok(z0)) → c9(H(z0))
PROPER(f(z0)) → c10(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c11(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c12(G(proper(z0)), PROPER(z0))
PROPER(d(z0)) → c13(D(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c14(H(proper(z0)), PROPER(z0))
C(ok(z0)) → c15(C(z0))
G(ok(z0)) → c16(G(z0))
D(ok(z0)) → c17(D(z0))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(f(z0)) → c4(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c5(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c6(F(z0))
H(mark(z0)) → c8(H(z0))
H(ok(z0)) → c9(H(z0))
PROPER(f(z0)) → c10(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c11(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c12(G(proper(z0)), PROPER(z0))
PROPER(d(z0)) → c13(D(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c14(H(proper(z0)), PROPER(z0))
K tuples:
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
C(ok(z0)) → c15(C(z0))
G(ok(z0)) → c16(G(z0))
D(ok(z0)) → c17(D(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c1(C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(D(z0))
ACTIVE(h(z0)) → c3(C(d(z0)), D(z0))
F(ok(z0)) → c7(F(z0))
Defined Rule Symbols:
active, f, h, proper, c, g, d, top
Defined Pair Symbols:
ACTIVE, F, H, PROPER, C, G, D, TOP
Compound Symbols:
c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19
(11) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ACTIVE(f(z0)) → c4(F(active(z0)), ACTIVE(z0))
We considered the (Usable) Rules:
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(d(z0)) → d(proper(z0))
proper(h(z0)) → h(proper(z0))
d(ok(z0)) → ok(d(z0))
g(ok(z0)) → ok(g(z0))
c(ok(z0)) → ok(c(z0))
And the Tuples:
ACTIVE(f(f(z0))) → c1(C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(D(z0))
ACTIVE(h(z0)) → c3(C(d(z0)), D(z0))
ACTIVE(f(z0)) → c4(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c5(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
H(mark(z0)) → c8(H(z0))
H(ok(z0)) → c9(H(z0))
PROPER(f(z0)) → c10(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c11(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c12(G(proper(z0)), PROPER(z0))
PROPER(d(z0)) → c13(D(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c14(H(proper(z0)), PROPER(z0))
C(ok(z0)) → c15(C(z0))
G(ok(z0)) → c16(G(z0))
D(ok(z0)) → c17(D(z0))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = [3] + [2]x1
POL(C(x1)) = 0
POL(D(x1)) = 0
POL(F(x1)) = 0
POL(G(x1)) = 0
POL(H(x1)) = 0
POL(PROPER(x1)) = 0
POL(TOP(x1)) = [2]x12
POL(active(x1)) = x1
POL(c(x1)) = x1
POL(c1(x1, x2, x3, x4)) = x1 + x2 + x3 + x4
POL(c10(x1, x2)) = x1 + x2
POL(c11(x1, x2)) = x1 + x2
POL(c12(x1, x2)) = x1 + x2
POL(c13(x1, x2)) = x1 + x2
POL(c14(x1, x2)) = x1 + x2
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1, x2)) = x1 + x2
POL(c19(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(c4(x1, x2)) = x1 + x2
POL(c5(x1, x2)) = x1 + x2
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(d(x1)) = x1
POL(f(x1)) = [1] + [2]x1
POL(g(x1)) = x1
POL(h(x1)) = [2]x1
POL(mark(x1)) = x1
POL(ok(x1)) = [2] + x1
POL(proper(x1)) = x1
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
proper(f(z0)) → f(proper(z0))
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(d(z0)) → d(proper(z0))
proper(h(z0)) → h(proper(z0))
c(ok(z0)) → ok(c(z0))
g(ok(z0)) → ok(g(z0))
d(ok(z0)) → ok(d(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(f(f(z0))) → c1(C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(D(z0))
ACTIVE(h(z0)) → c3(C(d(z0)), D(z0))
ACTIVE(f(z0)) → c4(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c5(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
H(mark(z0)) → c8(H(z0))
H(ok(z0)) → c9(H(z0))
PROPER(f(z0)) → c10(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c11(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c12(G(proper(z0)), PROPER(z0))
PROPER(d(z0)) → c13(D(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c14(H(proper(z0)), PROPER(z0))
C(ok(z0)) → c15(C(z0))
G(ok(z0)) → c16(G(z0))
D(ok(z0)) → c17(D(z0))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(h(z0)) → c5(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c6(F(z0))
H(mark(z0)) → c8(H(z0))
H(ok(z0)) → c9(H(z0))
PROPER(f(z0)) → c10(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c11(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c12(G(proper(z0)), PROPER(z0))
PROPER(d(z0)) → c13(D(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c14(H(proper(z0)), PROPER(z0))
K tuples:
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
C(ok(z0)) → c15(C(z0))
G(ok(z0)) → c16(G(z0))
D(ok(z0)) → c17(D(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c1(C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(D(z0))
ACTIVE(h(z0)) → c3(C(d(z0)), D(z0))
F(ok(z0)) → c7(F(z0))
ACTIVE(f(z0)) → c4(F(active(z0)), ACTIVE(z0))
Defined Rule Symbols:
active, f, h, proper, c, g, d, top
Defined Pair Symbols:
ACTIVE, F, H, PROPER, C, G, D, TOP
Compound Symbols:
c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19
(13) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
PROPER(g(z0)) → c12(G(proper(z0)), PROPER(z0))
We considered the (Usable) Rules:
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(d(z0)) → d(proper(z0))
proper(h(z0)) → h(proper(z0))
d(ok(z0)) → ok(d(z0))
g(ok(z0)) → ok(g(z0))
c(ok(z0)) → ok(c(z0))
And the Tuples:
ACTIVE(f(f(z0))) → c1(C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(D(z0))
ACTIVE(h(z0)) → c3(C(d(z0)), D(z0))
ACTIVE(f(z0)) → c4(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c5(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
H(mark(z0)) → c8(H(z0))
H(ok(z0)) → c9(H(z0))
PROPER(f(z0)) → c10(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c11(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c12(G(proper(z0)), PROPER(z0))
PROPER(d(z0)) → c13(D(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c14(H(proper(z0)), PROPER(z0))
C(ok(z0)) → c15(C(z0))
G(ok(z0)) → c16(G(z0))
D(ok(z0)) → c17(D(z0))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(C(x1)) = 0
POL(D(x1)) = 0
POL(F(x1)) = 0
POL(G(x1)) = 0
POL(H(x1)) = 0
POL(PROPER(x1)) = [1] + x1
POL(TOP(x1)) = x1 + x12
POL(active(x1)) = [2] + x1
POL(c(x1)) = x1
POL(c1(x1, x2, x3, x4)) = x1 + x2 + x3 + x4
POL(c10(x1, x2)) = x1 + x2
POL(c11(x1, x2)) = x1 + x2
POL(c12(x1, x2)) = x1 + x2
POL(c13(x1, x2)) = x1 + x2
POL(c14(x1, x2)) = x1 + x2
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1, x2)) = x1 + x2
POL(c19(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(c4(x1, x2)) = x1 + x2
POL(c5(x1, x2)) = x1 + x2
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(d(x1)) = x1
POL(f(x1)) = x1
POL(g(x1)) = [1] + x1
POL(h(x1)) = x1
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = [2] + x1
POL(proper(x1)) = x1
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
proper(f(z0)) → f(proper(z0))
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(d(z0)) → d(proper(z0))
proper(h(z0)) → h(proper(z0))
c(ok(z0)) → ok(c(z0))
g(ok(z0)) → ok(g(z0))
d(ok(z0)) → ok(d(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(f(f(z0))) → c1(C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(D(z0))
ACTIVE(h(z0)) → c3(C(d(z0)), D(z0))
ACTIVE(f(z0)) → c4(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c5(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
H(mark(z0)) → c8(H(z0))
H(ok(z0)) → c9(H(z0))
PROPER(f(z0)) → c10(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c11(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c12(G(proper(z0)), PROPER(z0))
PROPER(d(z0)) → c13(D(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c14(H(proper(z0)), PROPER(z0))
C(ok(z0)) → c15(C(z0))
G(ok(z0)) → c16(G(z0))
D(ok(z0)) → c17(D(z0))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(h(z0)) → c5(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c6(F(z0))
H(mark(z0)) → c8(H(z0))
H(ok(z0)) → c9(H(z0))
PROPER(f(z0)) → c10(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c11(C(proper(z0)), PROPER(z0))
PROPER(d(z0)) → c13(D(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c14(H(proper(z0)), PROPER(z0))
K tuples:
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
C(ok(z0)) → c15(C(z0))
G(ok(z0)) → c16(G(z0))
D(ok(z0)) → c17(D(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c1(C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(D(z0))
ACTIVE(h(z0)) → c3(C(d(z0)), D(z0))
F(ok(z0)) → c7(F(z0))
ACTIVE(f(z0)) → c4(F(active(z0)), ACTIVE(z0))
PROPER(g(z0)) → c12(G(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, f, h, proper, c, g, d, top
Defined Pair Symbols:
ACTIVE, F, H, PROPER, C, G, D, TOP
Compound Symbols:
c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19
(15) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
PROPER(c(z0)) → c11(C(proper(z0)), PROPER(z0))
We considered the (Usable) Rules:
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(d(z0)) → d(proper(z0))
proper(h(z0)) → h(proper(z0))
d(ok(z0)) → ok(d(z0))
g(ok(z0)) → ok(g(z0))
c(ok(z0)) → ok(c(z0))
And the Tuples:
ACTIVE(f(f(z0))) → c1(C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(D(z0))
ACTIVE(h(z0)) → c3(C(d(z0)), D(z0))
ACTIVE(f(z0)) → c4(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c5(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
H(mark(z0)) → c8(H(z0))
H(ok(z0)) → c9(H(z0))
PROPER(f(z0)) → c10(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c11(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c12(G(proper(z0)), PROPER(z0))
PROPER(d(z0)) → c13(D(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c14(H(proper(z0)), PROPER(z0))
C(ok(z0)) → c15(C(z0))
G(ok(z0)) → c16(G(z0))
D(ok(z0)) → c17(D(z0))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(C(x1)) = 0
POL(D(x1)) = 0
POL(F(x1)) = 0
POL(G(x1)) = 0
POL(H(x1)) = 0
POL(PROPER(x1)) = [1] + x1
POL(TOP(x1)) = [2]x12
POL(active(x1)) = [3] + x1
POL(c(x1)) = [2] + x1
POL(c1(x1, x2, x3, x4)) = x1 + x2 + x3 + x4
POL(c10(x1, x2)) = x1 + x2
POL(c11(x1, x2)) = x1 + x2
POL(c12(x1, x2)) = x1 + x2
POL(c13(x1, x2)) = x1 + x2
POL(c14(x1, x2)) = x1 + x2
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1, x2)) = x1 + x2
POL(c19(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(c4(x1, x2)) = x1 + x2
POL(c5(x1, x2)) = x1 + x2
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(d(x1)) = x1
POL(f(x1)) = x1
POL(g(x1)) = x1
POL(h(x1)) = x1
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = [3] + x1
POL(proper(x1)) = x1
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
proper(f(z0)) → f(proper(z0))
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(d(z0)) → d(proper(z0))
proper(h(z0)) → h(proper(z0))
c(ok(z0)) → ok(c(z0))
g(ok(z0)) → ok(g(z0))
d(ok(z0)) → ok(d(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(f(f(z0))) → c1(C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(D(z0))
ACTIVE(h(z0)) → c3(C(d(z0)), D(z0))
ACTIVE(f(z0)) → c4(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c5(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
H(mark(z0)) → c8(H(z0))
H(ok(z0)) → c9(H(z0))
PROPER(f(z0)) → c10(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c11(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c12(G(proper(z0)), PROPER(z0))
PROPER(d(z0)) → c13(D(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c14(H(proper(z0)), PROPER(z0))
C(ok(z0)) → c15(C(z0))
G(ok(z0)) → c16(G(z0))
D(ok(z0)) → c17(D(z0))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(h(z0)) → c5(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c6(F(z0))
H(mark(z0)) → c8(H(z0))
H(ok(z0)) → c9(H(z0))
PROPER(f(z0)) → c10(F(proper(z0)), PROPER(z0))
PROPER(d(z0)) → c13(D(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c14(H(proper(z0)), PROPER(z0))
K tuples:
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
C(ok(z0)) → c15(C(z0))
G(ok(z0)) → c16(G(z0))
D(ok(z0)) → c17(D(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c1(C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(D(z0))
ACTIVE(h(z0)) → c3(C(d(z0)), D(z0))
F(ok(z0)) → c7(F(z0))
ACTIVE(f(z0)) → c4(F(active(z0)), ACTIVE(z0))
PROPER(g(z0)) → c12(G(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c11(C(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, f, h, proper, c, g, d, top
Defined Pair Symbols:
ACTIVE, F, H, PROPER, C, G, D, TOP
Compound Symbols:
c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19
(17) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
H(ok(z0)) → c9(H(z0))
We considered the (Usable) Rules:
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(d(z0)) → d(proper(z0))
proper(h(z0)) → h(proper(z0))
d(ok(z0)) → ok(d(z0))
g(ok(z0)) → ok(g(z0))
c(ok(z0)) → ok(c(z0))
And the Tuples:
ACTIVE(f(f(z0))) → c1(C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(D(z0))
ACTIVE(h(z0)) → c3(C(d(z0)), D(z0))
ACTIVE(f(z0)) → c4(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c5(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
H(mark(z0)) → c8(H(z0))
H(ok(z0)) → c9(H(z0))
PROPER(f(z0)) → c10(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c11(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c12(G(proper(z0)), PROPER(z0))
PROPER(d(z0)) → c13(D(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c14(H(proper(z0)), PROPER(z0))
C(ok(z0)) → c15(C(z0))
G(ok(z0)) → c16(G(z0))
D(ok(z0)) → c17(D(z0))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = x1
POL(C(x1)) = x1
POL(D(x1)) = 0
POL(F(x1)) = 0
POL(G(x1)) = 0
POL(H(x1)) = [2]x12
POL(PROPER(x1)) = 0
POL(TOP(x1)) = x12
POL(active(x1)) = x1
POL(c(x1)) = x1
POL(c1(x1, x2, x3, x4)) = x1 + x2 + x3 + x4
POL(c10(x1, x2)) = x1 + x2
POL(c11(x1, x2)) = x1 + x2
POL(c12(x1, x2)) = x1 + x2
POL(c13(x1, x2)) = x1 + x2
POL(c14(x1, x2)) = x1 + x2
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1, x2)) = x1 + x2
POL(c19(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(c4(x1, x2)) = x1 + x2
POL(c5(x1, x2)) = x1 + x2
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(d(x1)) = x1
POL(f(x1)) = x1
POL(g(x1)) = x1
POL(h(x1)) = x1 + [2]x12
POL(mark(x1)) = x1
POL(ok(x1)) = [1] + x1
POL(proper(x1)) = 0
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
proper(f(z0)) → f(proper(z0))
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(d(z0)) → d(proper(z0))
proper(h(z0)) → h(proper(z0))
c(ok(z0)) → ok(c(z0))
g(ok(z0)) → ok(g(z0))
d(ok(z0)) → ok(d(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(f(f(z0))) → c1(C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(D(z0))
ACTIVE(h(z0)) → c3(C(d(z0)), D(z0))
ACTIVE(f(z0)) → c4(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c5(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
H(mark(z0)) → c8(H(z0))
H(ok(z0)) → c9(H(z0))
PROPER(f(z0)) → c10(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c11(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c12(G(proper(z0)), PROPER(z0))
PROPER(d(z0)) → c13(D(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c14(H(proper(z0)), PROPER(z0))
C(ok(z0)) → c15(C(z0))
G(ok(z0)) → c16(G(z0))
D(ok(z0)) → c17(D(z0))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(h(z0)) → c5(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c6(F(z0))
H(mark(z0)) → c8(H(z0))
PROPER(f(z0)) → c10(F(proper(z0)), PROPER(z0))
PROPER(d(z0)) → c13(D(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c14(H(proper(z0)), PROPER(z0))
K tuples:
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
C(ok(z0)) → c15(C(z0))
G(ok(z0)) → c16(G(z0))
D(ok(z0)) → c17(D(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c1(C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(D(z0))
ACTIVE(h(z0)) → c3(C(d(z0)), D(z0))
F(ok(z0)) → c7(F(z0))
ACTIVE(f(z0)) → c4(F(active(z0)), ACTIVE(z0))
PROPER(g(z0)) → c12(G(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c11(C(proper(z0)), PROPER(z0))
H(ok(z0)) → c9(H(z0))
Defined Rule Symbols:
active, f, h, proper, c, g, d, top
Defined Pair Symbols:
ACTIVE, F, H, PROPER, C, G, D, TOP
Compound Symbols:
c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19
(19) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ACTIVE(h(z0)) → c5(H(active(z0)), ACTIVE(z0))
PROPER(h(z0)) → c14(H(proper(z0)), PROPER(z0))
We considered the (Usable) Rules:
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(d(z0)) → d(proper(z0))
proper(h(z0)) → h(proper(z0))
d(ok(z0)) → ok(d(z0))
g(ok(z0)) → ok(g(z0))
c(ok(z0)) → ok(c(z0))
And the Tuples:
ACTIVE(f(f(z0))) → c1(C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(D(z0))
ACTIVE(h(z0)) → c3(C(d(z0)), D(z0))
ACTIVE(f(z0)) → c4(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c5(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
H(mark(z0)) → c8(H(z0))
H(ok(z0)) → c9(H(z0))
PROPER(f(z0)) → c10(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c11(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c12(G(proper(z0)), PROPER(z0))
PROPER(d(z0)) → c13(D(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c14(H(proper(z0)), PROPER(z0))
C(ok(z0)) → c15(C(z0))
G(ok(z0)) → c16(G(z0))
D(ok(z0)) → c17(D(z0))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = [3]x1
POL(C(x1)) = 0
POL(D(x1)) = 0
POL(F(x1)) = 0
POL(G(x1)) = 0
POL(H(x1)) = [1]
POL(PROPER(x1)) = [1] + [2]x1
POL(TOP(x1)) = x1 + [2]x12
POL(active(x1)) = [1] + x1
POL(c(x1)) = x1
POL(c1(x1, x2, x3, x4)) = x1 + x2 + x3 + x4
POL(c10(x1, x2)) = x1 + x2
POL(c11(x1, x2)) = x1 + x2
POL(c12(x1, x2)) = x1 + x2
POL(c13(x1, x2)) = x1 + x2
POL(c14(x1, x2)) = x1 + x2
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1, x2)) = x1 + x2
POL(c19(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(c4(x1, x2)) = x1 + x2
POL(c5(x1, x2)) = x1 + x2
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(d(x1)) = x1
POL(f(x1)) = x1
POL(g(x1)) = x1
POL(h(x1)) = [1] + x1
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = [2] + x1
POL(proper(x1)) = x1
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
proper(f(z0)) → f(proper(z0))
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(d(z0)) → d(proper(z0))
proper(h(z0)) → h(proper(z0))
c(ok(z0)) → ok(c(z0))
g(ok(z0)) → ok(g(z0))
d(ok(z0)) → ok(d(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(f(f(z0))) → c1(C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(D(z0))
ACTIVE(h(z0)) → c3(C(d(z0)), D(z0))
ACTIVE(f(z0)) → c4(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c5(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
H(mark(z0)) → c8(H(z0))
H(ok(z0)) → c9(H(z0))
PROPER(f(z0)) → c10(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c11(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c12(G(proper(z0)), PROPER(z0))
PROPER(d(z0)) → c13(D(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c14(H(proper(z0)), PROPER(z0))
C(ok(z0)) → c15(C(z0))
G(ok(z0)) → c16(G(z0))
D(ok(z0)) → c17(D(z0))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
S tuples:
F(mark(z0)) → c6(F(z0))
H(mark(z0)) → c8(H(z0))
PROPER(f(z0)) → c10(F(proper(z0)), PROPER(z0))
PROPER(d(z0)) → c13(D(proper(z0)), PROPER(z0))
K tuples:
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
C(ok(z0)) → c15(C(z0))
G(ok(z0)) → c16(G(z0))
D(ok(z0)) → c17(D(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c1(C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(D(z0))
ACTIVE(h(z0)) → c3(C(d(z0)), D(z0))
F(ok(z0)) → c7(F(z0))
ACTIVE(f(z0)) → c4(F(active(z0)), ACTIVE(z0))
PROPER(g(z0)) → c12(G(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c11(C(proper(z0)), PROPER(z0))
H(ok(z0)) → c9(H(z0))
ACTIVE(h(z0)) → c5(H(active(z0)), ACTIVE(z0))
PROPER(h(z0)) → c14(H(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, f, h, proper, c, g, d, top
Defined Pair Symbols:
ACTIVE, F, H, PROPER, C, G, D, TOP
Compound Symbols:
c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19
(21) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
PROPER(f(z0)) → c10(F(proper(z0)), PROPER(z0))
We considered the (Usable) Rules:
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(d(z0)) → d(proper(z0))
proper(h(z0)) → h(proper(z0))
d(ok(z0)) → ok(d(z0))
g(ok(z0)) → ok(g(z0))
c(ok(z0)) → ok(c(z0))
And the Tuples:
ACTIVE(f(f(z0))) → c1(C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(D(z0))
ACTIVE(h(z0)) → c3(C(d(z0)), D(z0))
ACTIVE(f(z0)) → c4(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c5(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
H(mark(z0)) → c8(H(z0))
H(ok(z0)) → c9(H(z0))
PROPER(f(z0)) → c10(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c11(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c12(G(proper(z0)), PROPER(z0))
PROPER(d(z0)) → c13(D(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c14(H(proper(z0)), PROPER(z0))
C(ok(z0)) → c15(C(z0))
G(ok(z0)) → c16(G(z0))
D(ok(z0)) → c17(D(z0))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(C(x1)) = 0
POL(D(x1)) = 0
POL(F(x1)) = 0
POL(G(x1)) = 0
POL(H(x1)) = 0
POL(PROPER(x1)) = [2]x1
POL(TOP(x1)) = [2]x12
POL(active(x1)) = [2] + x1
POL(c(x1)) = [1] + x1
POL(c1(x1, x2, x3, x4)) = x1 + x2 + x3 + x4
POL(c10(x1, x2)) = x1 + x2
POL(c11(x1, x2)) = x1 + x2
POL(c12(x1, x2)) = x1 + x2
POL(c13(x1, x2)) = x1 + x2
POL(c14(x1, x2)) = x1 + x2
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1, x2)) = x1 + x2
POL(c19(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(c4(x1, x2)) = x1 + x2
POL(c5(x1, x2)) = x1 + x2
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(d(x1)) = x1
POL(f(x1)) = [1] + x1
POL(g(x1)) = x1
POL(h(x1)) = x1
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = [2] + x1
POL(proper(x1)) = x1
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
proper(f(z0)) → f(proper(z0))
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(d(z0)) → d(proper(z0))
proper(h(z0)) → h(proper(z0))
c(ok(z0)) → ok(c(z0))
g(ok(z0)) → ok(g(z0))
d(ok(z0)) → ok(d(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(f(f(z0))) → c1(C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(D(z0))
ACTIVE(h(z0)) → c3(C(d(z0)), D(z0))
ACTIVE(f(z0)) → c4(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c5(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
H(mark(z0)) → c8(H(z0))
H(ok(z0)) → c9(H(z0))
PROPER(f(z0)) → c10(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c11(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c12(G(proper(z0)), PROPER(z0))
PROPER(d(z0)) → c13(D(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c14(H(proper(z0)), PROPER(z0))
C(ok(z0)) → c15(C(z0))
G(ok(z0)) → c16(G(z0))
D(ok(z0)) → c17(D(z0))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
S tuples:
F(mark(z0)) → c6(F(z0))
H(mark(z0)) → c8(H(z0))
PROPER(d(z0)) → c13(D(proper(z0)), PROPER(z0))
K tuples:
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
C(ok(z0)) → c15(C(z0))
G(ok(z0)) → c16(G(z0))
D(ok(z0)) → c17(D(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c1(C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(D(z0))
ACTIVE(h(z0)) → c3(C(d(z0)), D(z0))
F(ok(z0)) → c7(F(z0))
ACTIVE(f(z0)) → c4(F(active(z0)), ACTIVE(z0))
PROPER(g(z0)) → c12(G(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c11(C(proper(z0)), PROPER(z0))
H(ok(z0)) → c9(H(z0))
ACTIVE(h(z0)) → c5(H(active(z0)), ACTIVE(z0))
PROPER(h(z0)) → c14(H(proper(z0)), PROPER(z0))
PROPER(f(z0)) → c10(F(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, f, h, proper, c, g, d, top
Defined Pair Symbols:
ACTIVE, F, H, PROPER, C, G, D, TOP
Compound Symbols:
c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19
(23) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
ACTIVE(
f(
f(
z0))) →
c1(
C(
f(
g(
f(
z0)))),
F(
g(
f(
z0))),
G(
f(
z0)),
F(
z0)) by
ACTIVE(f(f(x0))) → c1(F(x0))
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
active(f(z0)) → f(active(z0))
active(h(z0)) → h(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
proper(f(z0)) → f(proper(z0))
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
proper(d(z0)) → d(proper(z0))
proper(h(z0)) → h(proper(z0))
c(ok(z0)) → ok(c(z0))
g(ok(z0)) → ok(g(z0))
d(ok(z0)) → ok(d(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(c(z0)) → c2(D(z0))
ACTIVE(h(z0)) → c3(C(d(z0)), D(z0))
ACTIVE(f(z0)) → c4(F(active(z0)), ACTIVE(z0))
ACTIVE(h(z0)) → c5(H(active(z0)), ACTIVE(z0))
F(mark(z0)) → c6(F(z0))
F(ok(z0)) → c7(F(z0))
H(mark(z0)) → c8(H(z0))
H(ok(z0)) → c9(H(z0))
PROPER(f(z0)) → c10(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c11(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c12(G(proper(z0)), PROPER(z0))
PROPER(d(z0)) → c13(D(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c14(H(proper(z0)), PROPER(z0))
C(ok(z0)) → c15(C(z0))
G(ok(z0)) → c16(G(z0))
D(ok(z0)) → c17(D(z0))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(x0))) → c1(F(x0))
S tuples:
F(mark(z0)) → c6(F(z0))
H(mark(z0)) → c8(H(z0))
PROPER(d(z0)) → c13(D(proper(z0)), PROPER(z0))
K tuples:
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
C(ok(z0)) → c15(C(z0))
G(ok(z0)) → c16(G(z0))
D(ok(z0)) → c17(D(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c1(C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(D(z0))
ACTIVE(h(z0)) → c3(C(d(z0)), D(z0))
F(ok(z0)) → c7(F(z0))
ACTIVE(f(z0)) → c4(F(active(z0)), ACTIVE(z0))
PROPER(g(z0)) → c12(G(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c11(C(proper(z0)), PROPER(z0))
H(ok(z0)) → c9(H(z0))
ACTIVE(h(z0)) → c5(H(active(z0)), ACTIVE(z0))
PROPER(h(z0)) → c14(H(proper(z0)), PROPER(z0))
PROPER(f(z0)) → c10(F(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, f, h, proper, c, g, d, top
Defined Pair Symbols:
ACTIVE, F, H, PROPER, C, G, D, TOP
Compound Symbols:
c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c1
(25) CpxTrsMatchBoundsProof (EQUIVALENT transformation)
A linear upper bound on the runtime complexity of the TRS R could be shown with a Match Bound [MATCHBOUNDS1,MATCHBOUNDS2] of 1.
The certificate found is represented by the following graph.
Start state: 3252
Accept states: [3253, 3254, 3255, 3256, 3257, 3258, 3259, 3260]
Transitions:
3252→3253[active_1|0]
3252→3254[f_1|0]
3252→3255[h_1|0]
3252→3256[proper_1|0]
3252→3257[c_1|0]
3252→3258[g_1|0]
3252→3259[d_1|0]
3252→3260[top_1|0]
3252→3252[mark_1|0, ok_1|0]
3252→3261[f_1|1]
3252→3262[h_1|1]
3252→3263[proper_1|1]
3252→3264[f_1|1]
3252→3265[h_1|1]
3252→3266[c_1|1]
3252→3267[g_1|1]
3252→3268[d_1|1]
3252→3269[active_1|1]
3261→3254[mark_1|1]
3261→3261[mark_1|1]
3261→3264[mark_1|1]
3262→3255[mark_1|1]
3262→3262[mark_1|1]
3262→3265[mark_1|1]
3263→3260[top_1|1]
3264→3254[ok_1|1]
3264→3261[ok_1|1]
3264→3264[ok_1|1]
3265→3255[ok_1|1]
3265→3262[ok_1|1]
3265→3265[ok_1|1]
3266→3257[ok_1|1]
3266→3266[ok_1|1]
3267→3258[ok_1|1]
3267→3267[ok_1|1]
3268→3259[ok_1|1]
3268→3268[ok_1|1]
3269→3260[top_1|1]
(26) BOUNDS(O(1), O(n^1))